Spectral sensitivity of ALOS, ASTER, IKONOS, LANDSAT and SPOT satellite imagery intended for the detection of archaeological crop marks
نویسندگان
چکیده
This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. This study compares the spectral sensitivity of remotely sensed satellite images, used for the detection of archaeological remains. This comparison was based on the relative spectral response (RSR) Filters of each sensor. Spectral signatures profiles were obtained using the GER-1500 field spectroradiometer under clear sky conditions for eight different targets. These field spectral signature curves were simulated to ALOS, ASTER, IKONOS, Landsat 7-ETM', Landsat 4-TM, Landsat 5-TM and SPOT 5. Red and near infrared (NIR) bandwidth reflectance were recalculated to each one of these sensors using appropriate RSR Filters. Moreover, the normalised difference vegetation index (NDVI) and simple ratio (SR) vegetation profiles were analysed in order to evaluate their sensitivity to sensors spectral filters. The results have shown that IKONOS RSR filters can better distinguish buried archaeological remains as a result of difference in healthy and stress vegetation (approximately 1Á8% difference in reflectance of the red and NIR band and nearly 0.07 to the NDVI profile). In comparison, all the other sensors showed similar results and sensitivities. This difference of IKONOS sensor might be a result of its spectral characteristics (bandwidths and RSR filters) since they are different from the rest of sensors compared in this study.
منابع مشابه
Evaluating the Potentials of Sentinel-2 for Archaeological Perspective
The potentials of the forthcoming new European Space Agency‘s (ESA) satellite sensor, Sentinel-2, for archaeological studies was examined in this paper. For this reason, an extensive spectral library of crop marks, acquired through numerous spectroradiometric campaigns, which are related with buried archaeological remains, has been resampled to the spectral characteristics of Sentinel-2. In add...
متن کاملOrthogonal Equations of Multi-Spectral Satellite Imagery for the Identification of Un-Excavated Archaeological Sites
This paper aims to introduce new linear orthogonal equations for different satellite data derived from QuickBird; IKONOS; WorldView-2; GeoEye-1, ASTER; Landsat 4 TM and Landsat 7 ETM+ sensors, in order to enhance the exposure of crop marks. The latest are of significant value for the detection of buried archaeological features using remote sensing techniques. The proposed transformations, re-pr...
متن کاملLinear Spectral Unmixing for the Detection of Neolithic Settlements in the Thessalian Plain, central Greece
Vegetation crop marks may be formed in areas where vegetation overlays near-surface archaeological remains. These features retain soil moisture with different percentage of moisture compared to the rest of the crops of an area. Depending on the type of feature, crop vigour may be enhanced or reduced by buried archaeological features. Satellite imagery has been already applied successfully in se...
متن کاملDetection of zinc-lead mineralization and associated alteration in the Mehdiabad deposit, Yazd province, using ASTER and Landsat 8-OLI satellite images
The Mehdiabad zinc-lead deposit, which is located at the East of Mehriz city, is a carbonate-hosted ore deposit lying in the dolomitic rocks of Taft Formation. This deposit is composed of oxide-carbonate and sulfide ores. Different spectral processing techniques were applied to ASTER and Landsat 8-OLI multispectral images to detect different mineralization zones and associated alterations. In O...
متن کاملDetection of Neolithic Settlements in Thessaly (Greece) Through Multispectral and Hyperspectral Satellite Imagery
Thessaly is a low relief region in Greece where hundreds of Neolithic settlements/tells called magoules were established from the Early Neolithic period until the Bronze Age (6,000 - 3,000 BC). Multi-sensor remote sensing was applied to the study area in order to evaluate its potential to detect Neolithic settlements. Hundreds of sites were geo-referenced through systematic GPS surveying throug...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Digital Earth
دوره 7 شماره
صفحات -
تاریخ انتشار 2014